Efeitos ansiolíticos do Atenolol injetado no núcleo accumbens septi em ratos após restrição de estresse no teste do labirinto em cruz Elevado
DOI:
https://doi.org/10.61695/rcs.v1i1.8Palavras-chave:
Atenolol, Labirinto em cruz elevado, Glutamato, Accumbens, Ansiedade, EsquizofreniaResumo
Objetivos: Anteriormente, observamos que a injeção de antagonistas de glutamato injetados dentro do Nucleus Accumbens Septi (NAS) produziu um efeito ansiolítico no teste do labirinto em cruz elevado (LCE) em ratos em estado basal não perturbado. O efeito do metoprolol, um antagonista específico do receptor beta-1 adrenérgico no LCE, foi estudado anteriormente em condição de repouso em ratos machos canulados bilateralmente no NAS. Métodos: Os ratos foram previamente submetidos ao estresse de contenção e divididos em quatro grupos. Eles receberam injeções bilaterais de 1 μl de solução salina (n=13) ou atenolol em diferentes doses dentro do NAS: 0,75 (n=15), 1 (n=13) e 2 μg/1 μl (n=13), 15 min antes do teste. Os ratos foram mantidos sob controle entre a injeção e o teste. Resultados: O tempo gasto no braço aberto (TSOA) foi modificado pelo tratamento (F = 4,239, p = 0,0096, df = 3) e aumentado pelo grupo de dose média quando comparado com o grupo de solução salina (p<0,05) e o grupo de dose média e grupo de dose mais baixa (p<0,01). As entradas de braços abertos (EOA) foram modificadas pelo tratamento (F = 3,461, p = 0,0231, gl = 3). Esse parâmetro foi aumentado pela dose média de atenolol (p<0,05) quando comparado ao soro fisiológico e à dose mais baixa. Não foram observadas diferenças significativas nos demais parâmetros estudados. Conclusão: Concluímos que o bloqueio do receptor beta-1 pelo atenolol dentro do NAS após a contenção leva a um efeito do tipo ansiolítico relacionado ao aumento do Tempo Passado no Braço Aberto (TSOA), e à desinibição comportamental, evidenciada no aumento de Entradas de Braço Aberto (EOA), mostrando um padrão comportamental específico.
Downloads
Referências
Acerbo MJ, Gargiulo PA, Krug I, Delius JD. Behavioural consequences of nucleus accumbens dopaminergic stimulation and glutamatergic blocking in pigeons. Behav Brain Res. 2002;136:171-177. https://doi.org/10.1016/S0166-4328(02)00109-2
Allen RM, Young SJ. Phencyclidine-induced psychosis. Am J Psychiatry. 1978;135:1081-1084. https://doi.org/10.1176/ajp.135.9.1081
Baiardi G, Ruiz AM, Beling A, Borgonovo J, Martínez G, Landa AI, Sosa MA, Gargiulo PA. Glutamatergic ionotropic blockade within accumbens disrupts working memory and might alter the endocytic machinery in rat accumbens and prefrontal cortex. J Neural Transm. 2007;114:1519-1528. https://doi.org/10.1007/s00702-007-0776-7
Bruce LL, Erichsen JT, Reiner A. Neurochemical compartmentalization within the pigeon basal ganglia. J Chem Neuroanat. 2016;78:65-86. https://doi.org/10.1016/j.jchemneu.2016.08.005
Carvalho AF, Van Bockstaele EJ. Direct intra-accumbal infusion of a beta-adrenergic receptor antagonist abolishes WIN 55,212-2-induced aversion. Neurosci Lett. 2011;500(1):82-5. https://doi.org/10.1016/j.neulet.2011.06.008
Chronister RB, DeFrance J.F. Nucleus Accumbens in historical perspective. In: RB Chronister, JF DeFrance (Eds.). The Neurobiology of Nucleus Accumbens, Haer Institute for Electrophysiological Research. 1981:1-6.
Feighner JP. Overview of antidepressants currently used to treat anxiety disorders. J Clin Psychiatry. 1999; 60 Suppl 22:18-22.
File SE. Behavioural detection of anxiolytic action. In: Elliot JM, Heal DJ, Marsden CA, editors. Experimental approaches to anxiety and depression. New York: Wiley, 1992:25 – 44.
Gargiulo API, Acuña A, Gargiulo MML, Gargiulo ÁJM, Gargiulo MCJ, Baiardi GC, Mora S, Lafuente JV, Romanowicz E, Landa AI, Guevara MA, Gargiulo PÁ. Effects of Cycloleucine in the Nucleus Accumbens Septi on the Elevated plus Maze Test in Rats. Neuropsychobiology. 2020 Jan 10:1-7. https://doi.org/10.1159/000505069
Gargiulo API, Gargiulo De Aranda MP, Gargiulo MML, Gargiulo AJM, Acuña A, Baiardi GC, Lafuente JV, Landa De Gargiulo AI, Guevara MA, Gargiulo PA. Effects of dizocilpine-induced glutamatergic blockade in the nucleus accumbens septi on the plus maze test. J Basic Clin Physiol Pharmacol. 2018; 29(3):241-246. https://doi.org/10.1515/jbcpp-2017-0100
Gargiulo PA, Acerbo MJ, Krug I, Delius JD. Cognitive effects of dopaminergic and glutamatergic blockade in nucleus accumbens in pigeons. Pharmacol Biochem Behav. 2005;81:732-739. https://doi.org/10.1016/j.pbb.2005.05.009
Gargiulo PA, Donoso AO. Luteinizing hormone releasing hormone (LHRH) in the periaqueductal gray substance increases some subcategories of grooming behavior in male rats. Pharmacol Biochem Behav. 1989; 32(4):853–856. 1989. https://doi.org/10.1016/0091-3057(89)90047-6
Gargiulo PA, Landa de Gargiulo AI. Glutamate and modeling of schizophrenia symptoms: review of our findings: 1990-2014. Pharmacol Rep. 2014;66:343-352. https://doi.org/10.1016/j.pharep.2014.03.010
Gargiulo PA, Landa de Gargiulo AI. Perception and Psychoses: The Role of Glutamatergic Transmission within the Nucleus Accumbens Septi. Behav Brain Sci. 2004;27:792-793. https://doi.org/10.1017/S0140525X04270182
Gargiulo PA, Siemann M, Delius J. Visual discrimination in pigeons impaired by glutamatergic blockade of nucleus accumbens. Physiol Behav. 1998;63:705-709. https://doi.org/10.1016/S0031-9384(97)00516-7
Gargiulo PA. Experimental approaches to perceptual dysfunction in schizophrenia. Rev Neurol. 2003; 37:545-551. https://doi.org/10.33588/rn.3706.2003351
Gargiulo, PA, Donoso, AO. Distinct grooming patterns induced by intracerebroventricular injection of CRH, TRH and LHRH in male rats. Braz J Med Biol Res. 1996;29(3):375-9.
Gargiulo, PA. Thyrotropin releasing hormone injected into the nucleus accumbens septi selectively increases face grooming in rats. Braz J Med Biol Res. 1996;29:805 810.
Grace AA, Floresco SB, Goto Y, Lodge DJ. Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci. 2007;30:220-227. https://doi.org/10.1016/j.tins.2007.03.003
Grace AA. Gating of information flow within the limbic system and the pathophysiology of schizophrenia. Brain Res Brain Res Rev. 2000;31:330-341. https://doi.org/10.1016/S0165-0173(99)00049-1
Groenewegen HJ, Vermeulen-van Der See E, Te Kortschot A, Witter M.P. Organization of the projections from the subiculum to the ventral stratum in the rat: A study using anterograde transport of Phasealus vulgaris leucoaglutinin. Neurosci. 1987;23:103-120. https://doi.org/10.1016/0306-4522(87)90275-2
Jessa M, Nazar M, Plaznik A. Effect of intra-accumbens blockade of NMDA receptors in two models of anxiety, in rats. Neurosci Res Commun. 1996;19:19-25. https://doi.org/10.1002/(SICI)1520-6769(199607)19:1<19::AID-NRC159>3.0.CO;2-M
Kelley AE, Andrzejewski MA, Baldwin AE, Hernández PJ, Pratt WE. Glutamate-Mediated Plasticity in Corticostriatal Networks. Role in Adaptive Motor Learning. Ann. N.Y. Acad. Sci. 2003;1003:159-168. https://doi.org/10.1196/annals.1300.061
Koob GF. Neural mechanisms of drug reinforcement. In: Kalivas PW & Samson HH (1992) The Neurobiology of Drug and Alcohol Addiction. Ann NY Acad Sci. 1992;654:171-191. https://doi.org/10.1111/j.1749-6632.1992.tb25966.x
Laconi MR, Casteller G, Gargiulo PA, Bregonzio C, Cabrera RJ. The anxiolytic effect of allopregnanolone is associated with gonadal hormonal status in female rats. Eur J Pharmacol. 2001;417(1-2):111-116. https://doi.org/10.1016/S0014-2999(01)00865-2
Landa AI, Cabrera RJ, Gargiulo PA. Prazosin blocks the glutamatergic effects of N-methyl-D-aspartic acid on lordosis behavior and luteinizing hormone secretion in the estrogen-primed female rat. Braz J Med Biol Res. 2006; 39 (3): 365-370. https://doi.org/10.1590/S0100-879X2006000300007
Landa AI, Gargiulo AJ, Gargiulo MM, Cabrera RJ, Bregonzio C, Lafuente Sánchez JV, Gargiulo PA. Alpha and beta noradrenergic mediation of NMDA glutamatergic effects on lordosis behaviour and plasmatic LH concentrations in the primed female rat. J Neural Transm. (Vienna). 2009;116 (5):551-557. https://doi.org/10.1007/s00702-009-0217-x
Llano López LH, Caif F, Fraile M, Tinnirello B, Landa de Gargiulo AI, Lafuente JV, Baiardi GC, Gargiulo PA. Differential behavioral profile induced by the injection of dipotassium chlorazepate within brain areas that project to the nucleus accumbens septi. Pharmacol Rep. 2013;65:566-578. https://doi.org/10.1016/S1734-1140(13)71034-X
Llano López LH, Caif F, García S, Fraile M, Landa AI, Baiardi G, Lafuente JV, Braszko JJ, Bregonzio C, Gargiulo PA. Anxiolytic-like effect of losartan injected into amygdala of the acutely stressed rats. Pharmacol Rep. 2012;64:54-63. https://doi.org/10.1016/S1734-1140(12)70730-2
Llano López LH, Melonari P, Olguin M, Fraile MD, Landa AI, Gargiulo PA. Effects of atenolol injected into the nucleus accumbens septi in rats in the elevated plus-maze test. J Basic Clin Physiol Pharmacol. 2020 Jun 29;31(6). https://doi.org/10.1515/jbcpp-2020-0003
Martínez G, Ropero C, Funes A, Flores E, Blotta C, Landa AI, Gargiulo PA. Effects of selective NMDA and non-NMDA blockade in the nucleus accumbens on the plus-maze test. Physiol Behav. 2002;76:219-224. https://doi.org/10.1016/S0031-9384(02)00704-7
Martínez G, Ropero C, Funes A, Flores E, Landa AI, Gargiulo PA. AP-7 into the nucleus accumbens disrupts acquisition but does not affect consolidation in a passive avoidance task. Physiol Behav. 2002;76:205-212. https://doi.org/10.1016/S0031-9384(02)00696-0
Mizoguchi N, Saigusa T, Aono Y, Sekino R, Takada K, Oi Y, Ueda K, Koshikawa N, Cools AR. The reboxetine-induced increase of accumbal dopamine efflux is inhibited by l-propranolol: a microdialysis study with freely moving rats. Eur J Pharmacol. 2008. 28;601(1-3):94-8. https://doi.org/10.1016/j.ejphar.2008.10.045
Mogenson GJ, Jones DL, Yim CY. From motivation to action: Functional interface between the limbic system and the motor system. Prog Neurobiol. 1980;14:69-97. https://doi.org/10.1016/0301-0082(80)90018-0
Pellegrino LJ, Pellegrino AS, Cushman AJ. A stereotaxic atlas of the rat brain. Plenum Press. New York. 1979.
Pennartz CMA, Groenewegen HJ, Lopes da Silva F. The nucleus accumbens as a complex of functionally distinct neuronal ensembles: An integration of behavioural, electrophysiological and anatomical data. Prog Neurobiol. 1994; 42:719-761. https://doi.org/10.1016/0301-0082(94)90025-6
Rudoy CA, Reyes AR, Van Bockstaele EJ. Evidence for beta1-adrenergic receptor involvement in amygdalar corticotropin-releasing factor gene expression: implications for cocaine withdrawal. Neuropsychopharmacology. 2009; 34 (5):1135-1148. https://doi.org/10.1038/npp.2008.102
Salamone JD. The involvement of nucleus accumbens dopamine in appetitive and aversive motivation. Behav Brain Res. 1994; 61:117-133. https://doi.org/10.1016/0166-4328(94)90153-8
Schank JR, Liles LC, Weinshenker D. Norepinephrine signaling through beta-adrenergic receptors is critical for expression of cocaine-induced anxiety. Biol Psychiatry. 2008;63(11):1007-1012. https://doi.org/10.1016/j.biopsych.2007.10.018
Stahl SM. Neuroendocrine markers of serotonin responsivity in depression. Prog Neuropsychopharmacol Biol Psychiatry. 1992;16(5):655-9. https://doi.org/10.1016/0278-5846(92)90022-7
Tassin JP. [Interrelations between neuromediators implicated in depression and antidepressive drugs]. Encephale. 1994 Dec; 20 Spec No 4:623-8.
Van Bockstaele EJ, Reyes AS, Rudoy CA. Anatomical substrates for cellular interactions between β1–adrenergic receptor and corticotropin-releasing factor in the amygdala. Society for Neuroscience. Abstracts. 2006.
Veenman CL, Wild JM, Reiner A. Organization of the avian "corticostriatal" projection system, a retrograde and anterograde pathway tracing study in pigeons. J Comp Neurol. 1995;354:87-126. https://doi.org/10.1002/cne.903540108
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Luis Hernán Llano López, Miriam Fraile, Adriana Inés Landa, Norman Darío López Velásquez, Manuel Alejandro Guevara, José Vicente Lafuente Sánchez, Pascual Ángel Gargiulo

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.