Anxiolytic-like effects of Atenolol injected into the nucleus accumbens septi in rats after restrain stress in the elevated plus maze test

Authors

  • Luis Hernán Llano López National University of Cuyo
  • Miriam Fraile National University of Cuyo
  • Adriana Inés Landa National University of Cuyo
  • Norman Darío López Velásquez Universidad Santo Tomas
  • Manuel Alejandro Guevara National University of Cuyo
  • José Vicente Lafuente Sánchez Universidad del País Vasco
  • Pascual Ángel Gargiulo National University of Cuyo

DOI:

https://doi.org/10.61695/rcs.v1i1.8

Keywords:

Atenolol, Plus-maze, Glutamate, Accumbens, Anxiety, Schizophrenia

Abstract

Objetives: Previously, we observed that the injection of glutamate antagonists injected within the Nucleus Accumbens Septi (NAS) produced an anxiolytic-like effect in the elevated plus maze (EPM) test in basal non-disturbed state rats. The effect of metoprolol, a specific Beta-1 Adrenoreceptor antagonist in the EPM, was studied previously in a resting condition in male rats bilaterally cannulated in the NAS. Methods: Rats were previously submitted to restrain stress and divided into four groups. They received bilaterally 1 μl injections of saline (n=13) or atenolol in different doses within the NAS: 0.75 (n=15), 1 (n=13) and 2 µg/1 µl (n=13), 15 min before testing. Rats were maintained under restrain between injection and test. Results: Time Spent in the Open Arm (TSOA) was modified by treatment (F = 4.239, p = 0.0096, df = 3) and increased by the medium dose group when it was compared with the saline group (p<0.05) and the lowest dose group (p<0.01). Open arms entries (OAE) were modified by treatment (F = 3.461, p = 0.0231, df = 3). This parameter was increased by the medium dose of atenolol (p<0.05) when compared to saline and the lowest dose. No significant differences were observed in other parameters studied. Conclusion: We conclude that atenolol beta-1 receptor blockade within the NAS after restraint leads to an anxiolytic-like effect related to an increase in the Time Spent in the Open Arm (TSOA), and behavioural disinhibition, evidenced in the increase in the Open Arm Entries (OAE), showing a specific behavioural pattern.

Downloads

Download data is not yet available.

Author Biographies

Luis Hernán Llano López, National University of Cuyo

Laboratory of Neurosciences and Experimental Psychology, CONICET, Department of Pathology, Faculty of Medical Sciences, National University of Cuyo, Mendoza, Argentina. Servicio de Terapia Intensiva Infantil. Hospital Pediátrico Dr. Humberto Notti, Mendoza, Argentina.

Miriam Fraile, National University of Cuyo

Laboratory of Neurosciences and Experimental Psychology, CONICET, Department of Pathology, Faculty of Medical Sciences, National University of Cuyo, Mendoza, Argentina.

Adriana Inés Landa, National University of Cuyo

Laboratory of Neurosciences and Experimental Psychology, CONICET, Department of Pathology, Faculty of Medical Sciences, National University of Cuyo, Mendoza, Argentina.

Norman Darío López Velásquez, Universidad Santo Tomas

Centro de Investigación e Innovación en Gerontología Aplicada CIGAP y Carrera de Kinesiología, Facultad de Salud, Universidad Santo Tomas, Temuco, Chile.

Manuel Alejandro Guevara, National University of Cuyo

Laboratory of Neurosciences and Experimental Psychology, CONICET, Department of Pathology, Faculty of Medical Sciences, National University of Cuyo, Mendoza, Argentina.

José Vicente Lafuente Sánchez, Universidad del País Vasco

Laboratorio de Neurociencias Clínicas y Experimentales (LANCE, Laboratory of Clinical and Experimental Neuroscience Research Group). Universidad del País Vasco, Leioa, Bizkaia, Espanha.

Pascual Ángel Gargiulo, National University of Cuyo

Laboratory of Neurosciences and Experimental Psychology, CONICET, Department of Pathology, Faculty of Medical Sciences, National University of Cuyo, Mendoza, Argentina.

References

Acerbo MJ, Gargiulo PA, Krug I, Delius JD. Behavioural consequences of nucleus accumbens dopaminergic stimulation and glutamatergic blocking in pigeons. Behav Brain Res. 2002;136:171-177. https://doi.org/10.1016/S0166-4328(02)00109-2

Allen RM, Young SJ. Phencyclidine-induced psychosis. Am J Psychiatry. 1978;135:1081-1084. https://doi.org/10.1176/ajp.135.9.1081

Baiardi G, Ruiz AM, Beling A, Borgonovo J, Martínez G, Landa AI, Sosa MA, Gargiulo PA. Glutamatergic ionotropic blockade within accumbens disrupts working memory and might alter the endocytic machinery in rat accumbens and prefrontal cortex. J Neural Transm. 2007;114:1519-1528. https://doi.org/10.1007/s00702-007-0776-7

Bruce LL, Erichsen JT, Reiner A. Neurochemical compartmentalization within the pigeon basal ganglia. J Chem Neuroanat. 2016;78:65-86. https://doi.org/10.1016/j.jchemneu.2016.08.005

Carvalho AF, Van Bockstaele EJ. Direct intra-accumbal infusion of a beta-adrenergic receptor antagonist abolishes WIN 55,212-2-induced aversion. Neurosci Lett. 2011;500(1):82-5. https://doi.org/10.1016/j.neulet.2011.06.008

Chronister RB, DeFrance J.F. Nucleus Accumbens in historical perspective. In: RB Chronister, JF DeFrance (Eds.). The Neurobiology of Nucleus Accumbens, Haer Institute for Electrophysiological Research. 1981:1-6.

Feighner JP. Overview of antidepressants currently used to treat anxiety disorders. J Clin Psychiatry. 1999; 60 Suppl 22:18-22.

File SE. Behavioural detection of anxiolytic action. In: Elliot JM, Heal DJ, Marsden CA, editors. Experimental approaches to anxiety and depression. New York: Wiley, 1992:25 – 44.

Gargiulo API, Acuña A, Gargiulo MML, Gargiulo ÁJM, Gargiulo MCJ, Baiardi GC, Mora S, Lafuente JV, Romanowicz E, Landa AI, Guevara MA, Gargiulo PÁ. Effects of Cycloleucine in the Nucleus Accumbens Septi on the Elevated plus Maze Test in Rats. Neuropsychobiology. 2020 Jan 10:1-7. https://doi.org/10.1159/000505069

Gargiulo API, Gargiulo De Aranda MP, Gargiulo MML, Gargiulo AJM, Acuña A, Baiardi GC, Lafuente JV, Landa De Gargiulo AI, Guevara MA, Gargiulo PA. Effects of dizocilpine-induced glutamatergic blockade in the nucleus accumbens septi on the plus maze test. J Basic Clin Physiol Pharmacol. 2018; 29(3):241-246. https://doi.org/10.1515/jbcpp-2017-0100

Gargiulo PA, Acerbo MJ, Krug I, Delius JD. Cognitive effects of dopaminergic and glutamatergic blockade in nucleus accumbens in pigeons. Pharmacol Biochem Behav. 2005;81:732-739. https://doi.org/10.1016/j.pbb.2005.05.009

Gargiulo PA, Donoso AO. Luteinizing hormone releasing hormone (LHRH) in the periaqueductal gray substance increases some subcategories of grooming behavior in male rats. Pharmacol Biochem Behav. 1989; 32(4):853–856. 1989. https://doi.org/10.1016/0091-3057(89)90047-6

Gargiulo PA, Landa de Gargiulo AI. Glutamate and modeling of schizophrenia symptoms: review of our findings: 1990-2014. Pharmacol Rep. 2014;66:343-352. https://doi.org/10.1016/j.pharep.2014.03.010

Gargiulo PA, Landa de Gargiulo AI. Perception and Psychoses: The Role of Glutamatergic Transmission within the Nucleus Accumbens Septi. Behav Brain Sci. 2004;27:792-793. https://doi.org/10.1017/S0140525X04270182

Gargiulo PA, Siemann M, Delius J. Visual discrimination in pigeons impaired by glutamatergic blockade of nucleus accumbens. Physiol Behav. 1998;63:705-709. https://doi.org/10.1016/S0031-9384(97)00516-7

Gargiulo PA. Experimental approaches to perceptual dysfunction in schizophrenia. Rev Neurol. 2003; 37:545-551. https://doi.org/10.33588/rn.3706.2003351

Gargiulo, PA, Donoso, AO. Distinct grooming patterns induced by intracerebroventricular injection of CRH, TRH and LHRH in male rats. Braz J Med Biol Res. 1996;29(3):375-9.

Gargiulo, PA. Thyrotropin releasing hormone injected into the nucleus accumbens septi selectively increases face grooming in rats. Braz J Med Biol Res. 1996;29:805 810.

Grace AA, Floresco SB, Goto Y, Lodge DJ. Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci. 2007;30:220-227. https://doi.org/10.1016/j.tins.2007.03.003

Grace AA. Gating of information flow within the limbic system and the pathophysiology of schizophrenia. Brain Res Brain Res Rev. 2000;31:330-341. https://doi.org/10.1016/S0165-0173(99)00049-1

Groenewegen HJ, Vermeulen-van Der See E, Te Kortschot A, Witter M.P. Organization of the projections from the subiculum to the ventral stratum in the rat: A study using anterograde transport of Phasealus vulgaris leucoaglutinin. Neurosci. 1987;23:103-120. https://doi.org/10.1016/0306-4522(87)90275-2

Jessa M, Nazar M, Plaznik A. Effect of intra-accumbens blockade of NMDA receptors in two models of anxiety, in rats. Neurosci Res Commun. 1996;19:19-25. https://doi.org/10.1002/(SICI)1520-6769(199607)19:1<19::AID-NRC159>3.0.CO;2-M

Kelley AE, Andrzejewski MA, Baldwin AE, Hernández PJ, Pratt WE. Glutamate-Mediated Plasticity in Corticostriatal Networks. Role in Adaptive Motor Learning. Ann. N.Y. Acad. Sci. 2003;1003:159-168. https://doi.org/10.1196/annals.1300.061

Koob GF. Neural mechanisms of drug reinforcement. In: Kalivas PW & Samson HH (1992) The Neurobiology of Drug and Alcohol Addiction. Ann NY Acad Sci. 1992;654:171-191. https://doi.org/10.1111/j.1749-6632.1992.tb25966.x

Laconi MR, Casteller G, Gargiulo PA, Bregonzio C, Cabrera RJ. The anxiolytic effect of allopregnanolone is associated with gonadal hormonal status in female rats. Eur J Pharmacol. 2001;417(1-2):111-116. https://doi.org/10.1016/S0014-2999(01)00865-2

Landa AI, Cabrera RJ, Gargiulo PA. Prazosin blocks the glutamatergic effects of N-methyl-D-aspartic acid on lordosis behavior and luteinizing hormone secretion in the estrogen-primed female rat. Braz J Med Biol Res. 2006; 39 (3): 365-370. https://doi.org/10.1590/S0100-879X2006000300007

Landa AI, Gargiulo AJ, Gargiulo MM, Cabrera RJ, Bregonzio C, Lafuente Sánchez JV, Gargiulo PA. Alpha and beta noradrenergic mediation of NMDA glutamatergic effects on lordosis behaviour and plasmatic LH concentrations in the primed female rat. J Neural Transm. (Vienna). 2009;116 (5):551-557. https://doi.org/10.1007/s00702-009-0217-x

Llano López LH, Caif F, Fraile M, Tinnirello B, Landa de Gargiulo AI, Lafuente JV, Baiardi GC, Gargiulo PA. Differential behavioral profile induced by the injection of dipotassium chlorazepate within brain areas that project to the nucleus accumbens septi. Pharmacol Rep. 2013;65:566-578. https://doi.org/10.1016/S1734-1140(13)71034-X

Llano López LH, Caif F, García S, Fraile M, Landa AI, Baiardi G, Lafuente JV, Braszko JJ, Bregonzio C, Gargiulo PA. Anxiolytic-like effect of losartan injected into amygdala of the acutely stressed rats. Pharmacol Rep. 2012;64:54-63. https://doi.org/10.1016/S1734-1140(12)70730-2

Llano López LH, Melonari P, Olguin M, Fraile MD, Landa AI, Gargiulo PA. Effects of atenolol injected into the nucleus accumbens septi in rats in the elevated plus-maze test. J Basic Clin Physiol Pharmacol. 2020 Jun 29;31(6). https://doi.org/10.1515/jbcpp-2020-0003

Martínez G, Ropero C, Funes A, Flores E, Blotta C, Landa AI, Gargiulo PA. Effects of selective NMDA and non-NMDA blockade in the nucleus accumbens on the plus-maze test. Physiol Behav. 2002;76:219-224. https://doi.org/10.1016/S0031-9384(02)00704-7

Martínez G, Ropero C, Funes A, Flores E, Landa AI, Gargiulo PA. AP-7 into the nucleus accumbens disrupts acquisition but does not affect consolidation in a passive avoidance task. Physiol Behav. 2002;76:205-212. https://doi.org/10.1016/S0031-9384(02)00696-0

Mizoguchi N, Saigusa T, Aono Y, Sekino R, Takada K, Oi Y, Ueda K, Koshikawa N, Cools AR. The reboxetine-induced increase of accumbal dopamine efflux is inhibited by l-propranolol: a microdialysis study with freely moving rats. Eur J Pharmacol. 2008. 28;601(1-3):94-8. https://doi.org/10.1016/j.ejphar.2008.10.045

Mogenson GJ, Jones DL, Yim CY. From motivation to action: Functional interface between the limbic system and the motor system. Prog Neurobiol. 1980;14:69-97. https://doi.org/10.1016/0301-0082(80)90018-0

Pellegrino LJ, Pellegrino AS, Cushman AJ. A stereotaxic atlas of the rat brain. Plenum Press. New York. 1979.

Pennartz CMA, Groenewegen HJ, Lopes da Silva F. The nucleus accumbens as a complex of functionally distinct neuronal ensembles: An integration of behavioural, electrophysiological and anatomical data. Prog Neurobiol. 1994; 42:719-761. https://doi.org/10.1016/0301-0082(94)90025-6

Rudoy CA, Reyes AR, Van Bockstaele EJ. Evidence for beta1-adrenergic receptor involvement in amygdalar corticotropin-releasing factor gene expression: implications for cocaine withdrawal. Neuropsychopharmacology. 2009; 34 (5):1135-1148. https://doi.org/10.1038/npp.2008.102

Salamone JD. The involvement of nucleus accumbens dopamine in appetitive and aversive motivation. Behav Brain Res. 1994; 61:117-133. https://doi.org/10.1016/0166-4328(94)90153-8

Schank JR, Liles LC, Weinshenker D. Norepinephrine signaling through beta-adrenergic receptors is critical for expression of cocaine-induced anxiety. Biol Psychiatry. 2008;63(11):1007-1012. https://doi.org/10.1016/j.biopsych.2007.10.018

Stahl SM. Neuroendocrine markers of serotonin responsivity in depression. Prog Neuropsychopharmacol Biol Psychiatry. 1992;16(5):655-9. https://doi.org/10.1016/0278-5846(92)90022-7

Tassin JP. [Interrelations between neuromediators implicated in depression and antidepressive drugs]. Encephale. 1994 Dec; 20 Spec No 4:623-8.

Van Bockstaele EJ, Reyes AS, Rudoy CA. Anatomical substrates for cellular interactions between β1–adrenergic receptor and corticotropin-releasing factor in the amygdala. Society for Neuroscience. Abstracts. 2006.

Veenman CL, Wild JM, Reiner A. Organization of the avian "corticostriatal" projection system, a retrograde and anterograde pathway tracing study in pigeons. J Comp Neurol. 1995;354:87-126. https://doi.org/10.1002/cne.903540108

Downloads

Published

2023-10-25

How to Cite

Llano López, L. H., Fraile, M., Landa, A. I., López Velásquez, N. D., Guevara, M. A., Lafuente Sánchez, J. V., & Gargiulo, P. Ángel. (2023). Anxiolytic-like effects of Atenolol injected into the nucleus accumbens septi in rats after restrain stress in the elevated plus maze test. Revista Ciências Da Saúde Ceuma, 1(1), 103–115. https://doi.org/10.61695/rcs.v1i1.8

Issue

Section

Artigos